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ABSTRACT 
 
 
 

A digital implementation of a phase sampling interferometer antenna 

system based on the Robust Symmetrical Number System (RSNS) is built using 

commercial-off-the-shelf (COTS) items.  The RSNS-based direction finding (DF) 

system uses short baselines to achieve a high resolution DF capability in a 

physically compact system for use as stand-in sensors on unmanned aerial 

vehicles.  The RSNS inherent integer Gray code property minimizes the possible 

encoding errors and adds a robustness to the accuracy of the estimated Angle of 

Arrival (AOA). 

A digital architecture using quadrature demodulators and real-time 

controllers provide greater flexibility for signal processing and allows for the 

implementation of a new virtual spacing algorithm.  The virtual spacing concept 

changes the RSNS moduli values to implement a virtual antenna spacing without 

having to physically change the antenna element spacing.  This enables higher 

resolution DF in circumstances where the Signal-to-Noise Ratio (SNR) is high 

enough to provide error free coding of the AOA. 

Two four element, digital 3-channel interferometer prototype systems were 

constructed and tested in the NPS anechoic chamber.  The first antenna array is 

designed using pairwise relatively prime (PRP) moduli.  When an extension of 

the virtual spacing concept for application to N-channel systems was successfully 

resolved, a second 3-channel array was built using non-PRP moduli for 

evaluating the performance of the virtual spacing concept.  The simulated and 

experimental results, hardware implementation and testing procedures are 

presented in this thesis.  Results for the first array show that the RSNS-based DF 

system is able to provide 0.7 degree RMS resolution with a baseline of 66 cm.  

For the second virtual spacing array, the short physical baseline of 14 cm was 

sensitive to noise and antenna spacing errors. 
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I. INTRODUCTION 

A. RADIO DIRECTION FINDING INTERFEROMETRY 
Radio direction finding (DF) has numerous applications in a variety of 

fields such as navigation, disaster response, wildlife tracking and electronic 

warfare.  In the military context, DF forms an important branch of electronic 

intelligence (ELINT).  DF systems enable the tracking of radiating platforms, for 

example, by means of triangulation, whereby appropriately spaced DF systems 

determine the geo-location of the radiating platform by combining the Angle-of-

Arrival (AOA) information from the known positions of the DF systems.   

DF systems are designed (and categorized) based on how they measure 

the characteristics of the intercepted electromagnetic (EM) signal to determine 

the AOA.  There are three broad categories: amplitude comparison, phase 

interferometry and time interferometry [1].  Some systems employ algorithms that 

utilize a combination of measurements.  The use of both amplitude comparison in 

combination with time or phase interferometry is common. 

Amplitude comparison systems extract the amplitude response of the 

antenna elements to determine the AOA.  The directional properties of elemental 

H-field loops and E-field dipoles provide response minima as they are rotated in 

azimuth. AOA estimates are acquired at these minima response orientations. 

Time and phase interferometry DF systems operate on a similar principle. 

Antenna arrays with multiple elements are placed at pre-determined distances 

based on the required resolution and frequency of the emitter to be intercepted.  

Given that EM waves require a finite time to traverse the distance between the 

antenna elements, the time or phase difference between elements can be 

measured to determine the AOA of the emitter.  This treatment approximates the 

EM wave-front to be planar, which is reasonable in most applications, as DF 

systems usually operate in the far-field of the source. 
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Figure 1.   Basic Phase-delay / Time-delay Interferometry (After[2]). 
 

Phase interferometry systems can generate an AOA resolution of +1 

degree, which satisfies modern electronic warfare (EW) requirements [2].  To 

achieve high resolution, the antenna element spacing is increased.  When 

antenna element spacing is increased beyond the half-wavelength distance, the 

inherent challenge of resolving the ambiguities presents itself as more than one 

unique solution is available.  This challenge can be overcome by introducing 

auxiliary antenna elements, where the large baselines provide high resolution, 

and small baselines are used to overcome ambiguities. 

 

B. PREVIOUS WORK 
This research is part of an ongoing project to apply the RSNS algorithm in 

the area of direction finding to achieve the dual advantage of high resolution and 

small baselines.  The previous implementations [3,4] used EEPROMS and mixed 

signal processing respectively to perform the RSNS signal processing.  The 

results were promising but contained a large number of encoding errors, due to 

noise and errors that could not be corrected due to the analog architecture used.  

Subsequent results [5] showed substantial improvements, but had several 

‘fading’ regions where large errors existed.   

Antenna 1 Antenna 2 

Incident Plane Wave 

d 

dsin(θ) 

∆φ=kdsin(θ) or ∆t=kdsin(θ)/c 

θ
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In [6], the use of digital antenna architectures using COTS items was 

investigated.  In [7], a ‘virtual channel’ concept using virtual element spacing was 

introduced.  Simulations showed that a variable resolution signal processing 

approach could be applied to the RSNS DF signal processing architecture for 

two-channel systems.   

 

C. THESIS OBJECTIVE  
Previous work dealt largely with simulations and the implementation was 

constructed using a 2-channel analog system.  The research goal is to expand 

on the previous work by designing and building a 3-channel demonstration array 

using a digital architecture.  A test-bed DF system for intercepting continuous 

wave (CW) signals at 2.4 GHz was built entirely out of low-cost COTS equipment 

and subsequently used to evaluate the high resolution RSNS and the ‘virtual 

channel’ concept. 

The objectives of this thesis are threefold: 

1. Design of a demonstration, 3-channel DF array, based on RSNS 

theory and implemented using a digital architecture. 

2. Evaluation of high resolution RSNS coding using COTS equipment. 

3. Evaluation of ‘Virtual Channel’ concept and the analytical extension 

for N-channel systems. 

 

D. PRINCIPAL CONTRIBUTIONS 
The design steps and application of RSNS algorithm to direction finding 

was simplified into eight steps.  MATLAB scripts have also been compiled into a 

single program for simulations.  A MATLAB script was written specifically for the 

generation of key RSNS parameters, including the look up table, for use in a 

LabView controlling program.   

All hardware design and specifications and the development process of 

the DF system are clearly captured in the thesis.  Test setup and procedures, 
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including calibration values, are also tabulated for conducted tests to be 

replicated if necessary.  The test results, as well as challenges and errors that 

were made, are listed in the thesis chronologically. 

One key contribution is the extension of the virtual spacing concept for N-

channel DF systems. Initial tests have been conducted for a three-channel 

system using virtual spacing.  With all hardware and controlling software for a 3-

channel DF system fully developed and functional, research into the application 

of wideband virtual spacing DF systems can be continued with ease. 

 

E. THESIS ORGANIZATION 
Chapter II reviews the basic operating principles of phase interferometry 

DF systems and provides the fundamental basis for applying RSNS for direction 

finding. 

Chapter III explains the RSNS theory and its application to phase 

interferometry.  The process of designing a RSNS-based DF system is 

presented.  Results from previous research and experiments are also presented.   

Chapter IV and V present the design and development of the DF system 

using COTS equipment.  Chapter IV deals with parametric design and 

calculations for building a 3-channel DF array based on RSNS theory.  

Simulation results from MATLAB are presented.  Chapter V presents the 

overview of the hardware used for building the demonstration array and software 

development of the control program using the NI-LabView program. 

Chapter VI presents, in chronological order, the observations and results 

of tests conducted on the demonstration array.  Analysis of the results and 

possible error sources are identified and discussed.  

Chapter VII covers the previous work on virtual spacing for 2-channel DF 

systems.  This concept is then extended for applications for N-Channel systems.  

Simulation and test results for a 3-channel virtual spacing DF system are 

presented.  
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Finally, Chapter VIII presents the conclusions and offer exciting 

possibilities for future work in this research field.  
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II. DIRECTION FINDING BY PHASE INTERFEROMETRY 

This chapter reviews the basic operating principles of DF by means of 

phase interferometry using an analog implementation.   

 

A.  THEORY OF PHASE INTERFEROMETRY 
It is important to note that the following treatment assumes that the DF 

array is in the ‘far-field’ with respect to the emitter.  This is often the case for 

practical DF systems as the DF array would be sufficiently far from the emitter to 

approximate the wave-front as a planar wave.   

A basic one-channel linear interferometer is shown in Figure 2.  It is 

comprised of two identical antenna elements, spaced d apart.  The incident EM 

wave arrives at an angle θ, measured from the perpendicular to the baseline 

axis.  The angle θ takes on the values from – 90° to 90°.       

 

Figure 2.   Two-Element Interferometry (After [2]). 

Antenna 1 Antenna 2 

Incident Plane Wave 

d

dsin(θ) 

θ

Mixer 

LPF 

Phase Detector 

V’
out 

ψ1 ψ2 
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The incident wave arrives at antenna element 1 and after propagating an 

additional distance of θsin( )d , arrives at element 2.  The signals from the two 

antenna elements take on the following form: 

ω ψ φ= + +cos( )i c i iV V t                                    (2.1) 

where i denotes the element index number; V is the signal amplitude response, 

ωc is the signal frequency in radians/sec, ψ i is the phase term due to propagation 

in the cables and φi  is the phase term relative to the origin.  In an analog 

architecture, the signals from the antennas are fed into a mixer and low-pass-

filter (LPF).  This system, commonly known as a phase detector, produces an 

output voltage of the following form: 

φ ψ φ= ∆ + ∆
2

( ) cos( )
2out

VV                                      (2.2) 

where ψ∆  results from the phase differential due to cable length differences, 

and φ∆  results from the phase differential due to the additional θsin( )d  distance 

traveled by the signal wave-front to reach antenna element 2.  This can be re-

written in the following form: 

2

( ) cos( sin( ))
2out

VV kdφ ψ θ= ∆ +                                   (2.3) 

where 2k π
λ

=  is the wavenumber. 

After eliminating the cable phase differential component and normalizing 

the output voltage to unit amplitude, we arrive at the following output 

( ) cos( sin( ))outV kdφ θ=                                            (2.4) 

The phase differential sin( )kd θ  takes on the value of –π to π and repeats itself 

with a period of 2π. 
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B.   AMBIGUITIES IN PHASE INTERFEROMETRY 
The phase differential φ∆  is a function of the AOA, frequency and 

distance between the antenna elements.  The phase differential is periodic and 

repeats itself with a period of 2π.  This leads to ambiguities at high frequencies or 

with a large spacing between the antenna elements.   

When antenna element spacing is λ≤ / 2d , a one to one mapping 

between the AOA and the phase differential exists.  Consider the case of 

λ= / 2d .  The phase differential is given by sin( )φ π θ∆ =  radians.  Figure 3 

shows the phase differential versus AOA in degrees, with a one to one mapping 

without ambiguities.   
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Figure 3.   Phase Differential vs AOA for d=λ/2 (After [7]). 
 

One measure of resolution, which is the precision at which we can 

measure the AOA, is defined as the phase gain or the rate of change of the 

phase differential versus the AOA [1].  The unit is degrees per degree.  In Figure 

3, the phase gain is 2 degrees per degree change in AOA.   
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Ambiguities occur when the spacing between antenna elements is greater 

than half of the frequency wavelength λ≥ / 2d .  Now consider the case where 

the antenna spacing is increased to one wavelength.  Now d=λ and the phase 

differential is given by 2 sin( )φ π θ∆ =  radians.  In this case, the phase differential 

completes exactly one rotation as the wave travels over the distance of one 

wavelength as shown in Figure 4.  Phase gain has increased by a factor of 2, to 

4 degrees in phase differential for every degree change in AOA, in proportion 

with the increase in element distance. 
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Figure 4.   Phase Differential vs AOA for d=λ (After [7]). 
 

The phase differential now suffers from ambiguities.  The mapping from 

AOA to phase differential is no longer unique.  Solving for the AOA using the 

same phase differential presents us with two possible AOA answers.   

Increasing the antenna element spacing increases the resolution but also 

proportionally increases the phase ambiguities that must be resolved.  In 

practice, a phase interferometry system has several baselines, where the long 

baselines provide the resolution and the short baselines are used to resolve the 

ambiguities.  
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C.   SUMMARY 
We have covered the principles of basic phase interferometry and AOA 

ambiguities resulting from high frequency or large antenna element spacing.  In 

the next chapter, we will review the Robust Symmetric Number System and how 

it can efficiently resolve the phase ambiguities in high resolution phase 

interferometry.  
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III. ROBUST SYMMETRICAL NUMBER SYSTEM-BASED 
DIRECTION FINDING 

Since it is desirable to obtain high resolution AOA estimates without a long 

baseline, a signal processing method employing the robust symmetrical number 

system (RSNS) was introduced in [3, 4, 5, 7]. In this chapter, the RSNS theory is 

reviewed and a step by step implementation for phase interferometry is 

discussed.  Previous experimental data are also presented and discussed. 

 
A. THE ROBUST SYMMETRICAL NUMBER SYSTEM 

1.   Basic Properties of the RSNS 

Consider an N-channel RSNS, where N>1. The basic RSNS sequence 

has the following form [8]: 

{ } = − − − −[0,0...,0,1,1...,1,..., 1,... 1, ,... , 1,... 1,...,1,...,1]h i i i i i i
N N NN N N

x m m m m m m     (3.1) 

{ }

1

2 1
2 2 1

i
i i i

h i i

i i i i

h s s h Nm s
N

x Nm N h s
Nm s h Nm sN

⎧ −⎢ ⎥ ≤ ≤ + +⎪⎢ ⎥⎣ ⎦⎪⎪= + − + −⎨ ⎢ ⎥
⎪ ⎢ ⎥ + + ≤ ≤ + −⎣ ⎦⎪
⎪⎩

     (3.2) 

In Equation (3.1), each sequence corresponding to mi, is shifted either left 

or right by 1is i= −  placed for { }1,...,i N∈ .  The shift values { }1 2, ,... Ns s s must 

form a complete residue system modulo N in order to realize the RSNS integer 

Gray-code properties.  Equation (3.2) determines the discrete state of each 

sequence.   

It has been shown that the period of a single channel with modulus mi is 

[9] 

2RSNS iP Nm=                   (3.3) 

and the fundamental period of an N-channel RSNS with modulus set 

1 2( , ,..., )Nm m m  is 
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= 1 22 ( , ,..., )RSNS NPF N m m m                                     (3.4) 

where 1 2( , ,..., )Nm m m represents the least common multiple of m1, m2,...,mN.   

 

2.   Determining the Dynamic Range of a RSNS Sequence 

Consider the two modulus set {3 4} where for m1 = 3 (s1= 0) and    m2 = 4 

(s2= 1).  In this example, the shift is to the right.  Table 1 shows the RSNS 

sequence with the appropriate shift applied to the modulus.  The column vectors, 

which consist of the integers within each modulus, change one at a time between 

code positions and possess integer Gray-code properties. 

 

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

m1 = 3 
(s1 = 0) 0 1 1 2 2 3 3 2 2 1 1 0 0 1 1 2 2 3 3 2 

m2 = 4 
(s2 =1) 0 0 1 1 2 2 3 3 4 4 3 3 2 2 1 1 0 0 1 1 

^
M  

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14  

Table 1.  RSNS Sequence for m1 = 3 (s1= 0) and m2 = 4 (s2= 1) (After [7]). 
 

Searching along the vector from left to right, we wish to find the largest 

continuous set of column vectors that are distinct. This sequence of distinct 

vectors forms the unambiguous output of the system and is defined as the 

system dynamic range, denoted by 
^

M . In [10], it was proved that the selection of 

the sequence shift (si) and permutations among the moduli has no effect on 
^

M , 

but may produce different start and stop points for the vectors corresponding to 
^

M  . The dynamic range of the 2-channel example shown in Table 1 is 
^

M =15.   

The dynamic range of several particular moduli combinations have been 

formulated in closed form. For two channels, three combinations of two relatively 

prime moduli m1 and m2 can yield 
^

M  as follows [11]: 
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Case I: m1 ≥ 3 and m2 = m1+1, then   

^

1 23( ) 6M m m= + −                           (3.7) 

Case II : m1 ≥ 5 and m2 = m1+2, then   

^

1 23( ) 7M m m= + −                               (3.8) 

Case III : m1 ≥ 5 and m2 = m1+C, and C ≥ 3, then   

^

1 24 2 2M m m= + −                                           (3.9) 

Checking the example shown in Table 1, which fits Equation (3.7), yields 
^

M =15.     

For three channel systems, two combinations with closed form solutions 

are available [9, 10]: 

 

Case I: m1 = 2k -1, m2 = 2k , m3 = 2k +1 for m1 ≥ 3 , then 

^
2
1 1

3 15 7
2 2

M m m= + +                                      (3.7) 

Case II : m2 = 2m2 +1, m3 =4m1 +1,  then   

^
2
1 16 21 3M m m= + +                                     (3.8) 

For other cases, a computer search algorithm would prove to be the most 

efficient means of determining the dynamic range and its vector sets, especially 

when dealing with large modulus numbers and channels [7, 10].   

So far, we have reviewed the basic features of the RSNS. In the next 

section, the relationship between RSNS theory and DF systems is discussed. 
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B.   THE RSNS ANTENNA ARCHITECTURE 
The output voltage of the interferometer between two elements is given by 

12 1 12( ) cos( sin( )) cos( )V kdφ θ φ= = ∆ .  For illustration, the normalized output voltage 

for the cases of d=λ/2 and d=λ are plotted in Figure 5. 
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Figure 5.   Output Voltage vs AOA for (a) d=λ/2 and (b) d=λ (After [3]). 
 

The plots show that the waveforms are symmetrical about the origin (the 

broadside of the array).  The ‘visible region’ in this case is the AOA over –90 to 

+90 degrees.  The waveform also appears in ‘folds’ over the visible region.  The 

number of folds for a given frequency and antenna element spacing are given by 

2
/ 2
d dn

λ λ
= =                                      (3.9) 

By increasing element distances by a factor of two and shifting the output folding 

waveform to be symmetric about the origin, a binary resolution interferometer 

system can be designed.   
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1.   Applying Rsns to Interferometers 
To apply the concept of RSNS-based signal processing to interferometers, 

a robust symmetrical number sequence with a proper shift value is used to 

represent a symmetrical folding waveform out of the antenna.  The following 

describes the steps required to integrate the RSNS signal processing into a 

phase interferometer DF system. 

a. Determine N, the number of channels required.  The number 

of required antenna elements will be N+1. 

b. Identify an integer valued modulus for each channel (m1, 

m2…mi).  It has been shown that choosing pairwise relatively prime (PRP) moduli 

such as {3 7} and {7 19} gives the most efficient dynamic range.   

c. Determine the system dynamic range based on the chosen 

moduli.  This can be extremely time consuming when dealing with large modulus 

values and large number of channels.  A MATLAB-based search algorithm has 

been developed by [7, 10] to facilitate this process. 

d. Define the number of folds within each modulus.  This is 

calculated by dividing the dynamic range by the period of each modulus. 

^ ^

2i
RSNS i

M Mn
P Nm

= =                                     (3.10) 

e. Determine the required antenna spacing for each channel. 

^

2 4i i
i

Md n
Nm

λ λ
= =               (3.11) 

f. Re-mapping the Field of View (FOV)).  This is an optional 
step.  Antenna patterns degrade at wide angles.  The reliable-FOV 

characteristics of the antenna elements chosen for implementing the antenna 

array should be determined, and the RSNS-FOV can be compressed by means 

of a scaling factor to cover the reliable antenna FOV.  This has the effect of 
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enhancing resolution and decreasing the required antenna spacing [12]. 

Considering Equation (2.4) with k and Vout held constant, we have 

' 'sin( ) sin( )d dθ θ=               (3.12) 

where θ and d correspond to the maximum field of view (FOV) and the antenna 

spacing for the original (unscaled) configuration. The quantities θ’ and d’  are the 

maximum FOV and antenna spacing for the remapped (scaled) configuration. 

Rearranging Equation (3.12), the scale factor is defined as 

'

'
sin( )
sin( )

d
d

θξ
θ

= =            (3.13) 

Combining Equations (3.11) and (3.13), we obtain the scaled antenna 

spacing 

^

'

4i i
i

Md d
m N
λξ ξ= =                (3.14) 

g. Determine the thresholds.  In the digital architecture, the 

thresholds can be implemented by means of a program or script.  The thresholds 

for channel mi are 

,

1
2cos , 1

i

i

j m i
i

m j
V j m

m
π

⎛ ⎞− +⎜ ⎟
= ≤ ≤⎜ ⎟

⎜ ⎟
⎝ ⎠

                    (3.15) 

When a folding waveform exceeds a threshold, the integer value within the 

RSNS sequence increments; likewise the integer value decrements when the 

folding waveform drops below a threshold.  Figure 6 illustrates the discrete states 

of the two-channel RSNS example as shown in Table 1. The symmetrical folding 

waveforms having moduli m1=3 (s1=0) and m2=4 (s2=1) are superimposed with 

the thresholds , ij mV  from Equation (3.15), shown on the vertical axis. This 

encodes the folding waveforms into the RSNS. The discrete states (integers) 

shown above the folding waveforms represent the number of thresholds crossed 

by the folding waveform.  Note that only one threshold is crossed at a time. 



19 

 

Figure 6.   Mapping RSNS folding waveforms to threshold values   (After [4]). 
 

h. Calculate the phase adjustment term for each channel.  The 

phase adjustment term for each channel maps the center of the dynamic range 

to the response of the antenna when the signal AOA is at broadside. Referring to 

Table 1, neither modulus has symmetry about the midpoint of the dynamic range, 

which is h=11. Therefore, a phase adjustment ς is added to Equation (2.4) giving 

( )( ) cos sinoutV kdθ θ ς= +                               (3.16) 

When θ=0, sin(θ)=0, so Vout (θ=0) = cos(ς).  The value of ς is selected so 

that Vout (θ=0) is encoded to the center bin of the system dynamic range. In the 

example shown in Table 1, θ =( 0)outV  should be encoded into ς=0 for m1 and ς=3 

for m2.  Note that the unit for phase adjustment is in radians. 

At this point, the relationship between the RSNS digital output and the 

angle of arrival has been established. Using this relation, we can plot the transfer 

function of the processor, which is a plot of actual AOA versus the estimated 

AOA. 
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2.   Resolution of the RSNS Interferometer 

Studies [12] have shown that the estimated AOA '
uθ  for the uth bin is given 

as  

' 1
^

2 1 1sinu
u

M
θ

ξξ

−
⎛ ⎞+⎜ ⎟= −
⎜ ⎟
⎝ ⎠

                                          (3.17) 

and the AOA resolution ru for the uth bin is given as 

^ ^

1 1
^ ^

2 2 2sin sinu
u M u Mr

M Mξ ξ

− −
⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟= −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                              3.18) 

Note that the resolution changes throughout the FOV. 

 

C.   DESIGN EXAMPLE AND EXPERIMENTAL RESULTS 
In this section, a two-channel, 6-bit RSNS antenna design originally given 

in [5] is described to illustrate the design procedures.  The schematic diagram 

shown in Figure 7 is for the design of a 6-bit RSNS-based interferometer using 

m1=8 (s1=0) and m2=17 (s2=1).  Printed circuit dipoles operating at the frequency 

of 8.0 GHz were used for the antenna elements.  In this analog architecture, the 

thresholds crossings were detected using comparators.    
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Figure 7.   Block diagram of the RSNS-based DF System (From [5]). 
 

1.   Design of the DF System 
The design of the system is broken down into the steps described in the 

previous section for the application of RSNS to interferometers.  

a. The number of channels required is 2.  The number of required 

antenna elements is 3. 

b. Identify an integer valued modulus for each channel (m1, m2).  The 

chosen moduli are m1=8 and m2=17.  This is considered a pairwise relatively 

prime (PRP) moduli set.  

c. Determine the system dynamic range based on the chosen moduli.  

Using the MATLAB search program, the dynamic range is determined to be 64.  

The RSNS sequence is shown in Table 2. 
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Table 2.  RSNS Sequence for m1=8 and m2=17 (From [3]). 
 

d. Define the number of folds within each modulus.  Applying Equation 

(3.10), the respective number of folds are calculated to be n1=2 and n2= 16/17.   

e. Determine the required antenna spacing for each channel.  The 

number of folds is simply multiplied by half a wavelength to determine the 

required distances.  In this case, the wavelength is 3.75 cm for frequency of 8 

GHz.  This results in unscaled distances of d1= 3.75 cm and d2 = 1.765 cm. 

f. Scaling the FOV.  A scaling factor of 2
3

ξ =  was chosen to re-map 

the FOV from ±90o to ±60o. The corresponding scaled element spacing, 

determined by Equation (3.14) are '
1d = 4.33 cm and '

2d =2.04 cm. 
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g. Determine the thresholds.  The thresholds are shown in Table 3. 

 

Table 3.  Threshold Values for Moduli set {8 17} (From [5]). 
 

h. Calculate the phase adjustment term for each channel.  A phase 

adjuster ςi for each channel is calculated using Equation (3.16).  The normalized 

voltage output for channel m1 after adding a phase adjustment is given as 

 1 1( ) cos sin
4outV kd πθ θ⎛ ⎞= +⎜ ⎟

⎝ ⎠
                  (3.19) 

and for channel m2,   

2 2( ) cos sin
2outV kd πθ θ⎛ ⎞= +⎜ ⎟

⎝ ⎠
                       (3.20) 

Figure 8 depicts the folding output waveforms from Equations (3.19) and 

(3.20).  The corresponding quantized folding output waveforms are plotted in 

Figure 9. 
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Figure 8.   Folding Output Waveforms with Phase Adjustment (From [7]). 
 

 

Figure 9.    Phase Adjusted Folding Waveforms after Comparators (From [7]). 
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Finally, by combining the information in Table 2 and Figure 9, and using 

Equation (3.17), we can obtain a plot of estimated AOA versus true AOA as 

shown in Figure 10. 

 

Figure 10.   Transfer Function, the Estimated AOA versus Actual AOA 
(From [7]). 

 
2.   Experimental Results and Analysis 
A prototype circuit based on Figure 7 was built and tested [5]. The 

measured AOA versus true AOA is shown in Figure 11. 
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Figure 11.   Measured RSNS Transfer Function (From [5]). 

 
The experimental results exhibit the basic features of the simulated (ideal) 

transfer function shown in Figure 10.  However, the performance, while 

promising, contains large fading regions which are in part due to the analog 

components that were used.  These issues have been discussed in [3-5, 7]. In 

[7], an error analysis was performed on each fundamental parameter, including 

antenna spacing and phase adjustment errors, to show how the SNR affects the 

performance of the transfer function.   

 

D. SUMMARY 
This chapter has covered the principles of designing a RSNS based DF 

system.  A design example and the results of previous work were reviewed.  In 

the next two chapters, the design and implementation of a RSNS-based DF 

demonstration system is described. 
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IV.   DESIGN OF RSNS-BASED DF DEMONSTRATION ARRAY – 
DETERMINING RSNS PARAMETERS 

This chapter describes the design considerations and RSNS parameters 

used for implementation of the demonstration array.  The objective was to build a 

high-resolution RSNS-based DF demonstration array employing digital 

architecture.   

To achieve this goal, it’s necessary to determine the key design 

parameters, such as the signal frequency on which DF testing will be conducted, 

as well as the RSNS parameters, which determine the array size and antenna 

element spacing.  We shall first present how the RSNS parameters were 

determined for the demonstration array before discussing the practical 

implementation and hardware used to assemble the array (next chapter). 

 

A.   DETERMINING RSNS PARAMETERS  
Using the steps laid out in section C of Chapter 3, the key parameters of 

the RSNS DF system were decided in consultation with the thesis advisors.   

1. Determine N, number of channels required.  A 3-channel system 

was decided upon, as a previous implementation with a two-channel analog 

system [5] had been tested.  A total of four antenna elements would be required 

for the 3-channel system. 

2. Identify an integer valued modulus for each channel (m1, m2…mi).  

In order to achieve a high resolution system, a PRP moduli set was used.  Steps 

2 through 5 were carried out to obtain options for consideration.  The moduli set 

of {7 15 29} was decided upon, as it provided the dual benefits of high resolution 

and a short antenna baseline requirement.   

3. Determine the system dynamic range based on the chosen moduli.  

The dynamic ranges for each of the moduli set under consideration were 
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determined by means of the MATLAB-based RSNS search program.  For our 

chosen moduli set, the dynamic range was determined to be 
^

M = 444. 

4. Define the number of folds within each modulus.  This is calculated 

by dividing the dynamic range by the period of the each modulus.  The number of 

folds within each modulus were determined to be  

       n1 = 10.5952, 

       n2 = 4.9444, and  

       n3 = 2.5575   

5. Determine the required antenna spacing.  The required antenna 

spacing is determined by multiplying the number of folds by half the wavelength 

of the signal frequency of interest.  Based on the readily available RF 

components for building the demonstration array, a signal frequency of 2.4 GHz 

was selected.  This equates to a wavelength of    12.5 cm.  The required antenna 

element spacing from the reference antenna are: 

d1 = 66.22 cm,      

d2 = 30.9 cm, and 

d3 = 15.98 cm 

6. Re-mapping the FOV.  Given high resolution available from the 

chosen PRP moduli, the FOV was not scaled and the scaling factor used for the 

RSNS algorithm was unity.   

7. Determine the thresholds.  For each channel, there would be 

corresponding number of thresholds matching the modulus number.  The chosen 

moduli set of {7 15 29} therefore yields a corresponding number of thresholds as 

shown in Table 4.    
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Threshold # Modulus 1 : 7 Modulus 2 : 15 Modulus 3 : 29 
1.  -0.9749    -0.9945    -0.9985 
2.  -0.7818    -0.9511 -0.9868 
3.  -0.4339 -0.8660    -0.9635 
4.  0 -0.7431 -0.9290 
5.  0.4339 -0.5878   -0.8835 
6.  0.7818 -0.4067 -0.8277 
7.  0.9749 -0.2079 -0.7622 
8.  - 0 -0.6877 
9.  - 0.2079 -0.6052 
10.  - 0.4067 -0.5156 
11.  - 0.5878 -0.4199 
12.  - 0.7431 -0.3193 
13.  - 0.8660 -0.2150 
14.  - 0.9511 -0.1081 
15.  - 0.9945 0 
16.  - - 0.1081 
17.  - - 0.2150 
18.  - - 0.3193 
19.  - - 0.4199 
20.  - - 0.5156 
21.  - - 0.6052 
22.  - - 0.6877 
23.  - - 0.7622 
24.  - - 0.8277 
25.  - - 0.8835 
26.  - - 0.9290 
27.  - - 0.9635 
28.  - - 0.9868 
29.  - - 0.9985 

 
Table 4.  Threshold Values for Demonstration Array. 

         
8. Calculate the phase adjustment term for each channel.  The phase 

adjustment terms for the respective channels were similarly determined by 

means of a MATLAB-based search program developed in [7].  The required 

phase adjustments are shown in Table 5.  

 

 



30 

 Phase Adjustment Term 

Channel 1 -1.4960 radians 

Channel 2 0.0698 radians 

Channel 3 0.8666 radians 

Table 5.  Phase Adjustment Terms for Demonstration Array. 
 
B.   STIMULATION RESULTS FOR DF ARRAY USING MODULI {7 15 29} 

With the key RSNS design parameters determined, the transfer function, 

which shows the actual AOA versus the estimated AOA, is plotted in Figures 12 

to 14.  
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Figure 12.   Transfer Function for Demonstration Array using Moduli {7 15 29}. 

 
 

Examining the transfer function in Figure 12, it looks like a smooth straight 

line due to the high resolution; 444 bins over the unscaled FOV of –90 to 90 

degrees.  In Figure 13, we examine the transfer characteristics in greater detail 

when the AOA is in the vicinity of broadside.  
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Figure 13.   Transfer Function Near Broadside. 

 
In Figure 13, it is evident that the transfer function maps the estimated 

AOA of the signal in discrete increments, producing a stair-case like function.  

This effect is due to the discrete nature of the mapping of the RSNS folding 

waveforms and coding by means of detecting threshold crossings.  In Figure 14, 

we examine the transfer function at high AOA angles. 
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Figure 14.   Transfer Function at High AOA Angles. 

 

Comparing Figure 13 with Figure 14, the discrete behavior is present in 

both plots but more pronounced as we increase the signal AOA.  The resolution 

of the DF system increases as we increase the AOA angle and more than 

doubles at 65 degrees.  The resolution can be determined by Equation (3.18) 

and it conforms to an arc-sine relationship.  Examining the simulated quantization 

error shown in Figure 15 through 17, it is evident that the errors increase 

correspondingly with signal AOA.   
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Figure 15.   Quantization Error for Demonstration Array. 
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Figure 16.   Quantization Error Near Broadside. 
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Figure 17.   Quantization Error at High AOA Angles. 

 
C. SUMMARY 

The key RSNS design parameters for the demonstration system are 

summarized below: 

 
Operating Frequency  = 2.4 GHz      

Wavelength    = 12.5 cm 

Half wavelength   = 6.25 cm 

 
 mi values Folds in each mi Dist btw elements (cm) 

m1 7 10.5 66.22 
m2 15 4.93 30.9 
m3 29 2.55 15.98 

 
Dynamic Range  = 444 

Resolution at broadside = 0.258° 

Resolution at 60° AOA = 1.311° 
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With the RSNS design parameters determined and simulations conducted, 

we move on to build the demonstration system.  The next chapter covers the 

hardware and control software of the demonstration system. 
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V.   DESIGN OF RSNS-BASED DF DEMONSTRATION ARRAY –
HARDWARE AND SOFTWARE IMPLEMENTATION 

A significant portion of the initial work on the characterization of the 

hardware as well as the initial LabView programs for calibration of the 

demodulator board were spear-headed by Gert Burgstaller [13] and Levant 

Gezer [14]; two students who graduated in September 2006.  We were working 

with several identical hardware components and aspects of the LabView 

software.  Their initial work contributed significantly in overcoming a steep 

learning curve on building the demonstration array and programming LabView for 

signal sampling and processing. 

Gert Burgstaller conducted a detailed analysis and characterization of the 

hardware components [13].  A number of diagrams and pictures in this chapter 

are referenced to his thesis.   

Levant Gezer wrote a LabView program to control ADCs for sampling I/Q 

data from eight demodulators [14].  The LabView program used for controlling 

the demonstration system is based heavily on his program, modified and scaled 

down for controlling four ADC for our application. 

 
A. HARDWARE DESIGN 

The electronics hardware used to build the demonstration array is from 

COTS sources.  A number of parts such as the variable power supply and RF 

shielding were built by Bob Broadston, Lab director of the Microwave lab.  Other 

parts such as the antenna array, mounting blocks and power cables were built 

with his assistance.  The block diagram in Figure 18 shows the hardware used in 

the demonstration array. 
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Figure 18.   Hardware Block Diagram of Demonstration Array. 
 

After the I/Q data has been sampled and quantized from the demodulator 

boards, it is fed to the host computer through a Ethernet connection for signal 

processing.  

 

B. OVERVIEW OF HARDWARE COMPONENTS 
A majority of the key hardware components used in the demonstration 

array are National Instruments (NI) modular systems.  Along with the hardware 

like the ADC and controller modules, LabView Version 8.0 is the main software 

application that is used for both controlling the hardware and the implementation 

of the RSNS algorithm through embedded MATLAB scripts within the LabView 

program. 
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The key components in the demonstration array are described in the 

following section in order of signal flow, starting with the antenna elements and 

ending with the Ethernet connection to the host computer. The key specifications 

and description of the hardware components are covered in this section.     

 

Component Quantity Remarks 
Dipole Antennas 4 From previous thesis project 

Ground Plane 1 DIY board with copper foil 

LNA-2700 4 Low noise amplifier  

RG303 cables 4 New from Pasterneck, Lower losses 
compared to RG58 for RF signals 

AD8347-EVAL 4 Demodulator boards from Analog Devices 

VCO2400 1 New from RF Bay Inc, not used due to 
frequency drifts 

Power Splitter 1 Used to split LO signal for demodulator 
boards 

RG58 cable 16 4 for each demodulator board 

NI-9215 ADC 4 Analog to Digital conversion for I&Q 
signals 

NI cRIO-9101 1 4 slot reconfigurable embedded chassis to 
house the NI-9215 ADCs 

NI cRIO-9004 1 FPGA real time controller 

Power supply unit 1 Provides 5V and 12V outputs 

Variable Voltage  1 DIY to provide 0.38V for demod boards 

Ethernet cable 1 To link up to host computer 

Table 6.  List of Hardware Components. 
 
1. Dipole Antenna Element 
The antenna array utilizes printed circuit dipole antennas from a previous 

thesis project. The dipole antennas were designed with a nominal operating 

frequency of 2.4 GHz and a return loss of over 15 dB.  A dipole mounted in a 

ground plane and one standing alone is shown in Figure 19.  This setup with a 
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single element was used for testing by Gert Burgstaller in the anechoic chamber 

to determine the dipole antenna pattern. 

 

Figure 19.   Two Dipole Elements, One Mounted in a Ground Plane  
(From [13]). 

 

The element gain, Gdipole, was measured in the chamber using a 

comparative method.  The measured element patterns for the printed dipole 

antenna mounted in a ground plane at 2.4 GHz are displayed in Figure 20. 
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Figure 20.   Dipole element pattern measurement measured at 2.40 GHz     
(From [12]). 

 

The average maximum pattern value for the received power for the two 

polarizations is 

 ( ) ( )8.18 7.27
7.72 dB

2
− + −

= − . (5.2) 

The gain of the printed circuit dipole antenna mounted in the ground plane 

compares to the reference measurement by 

 ( )2.85 7.72 17.12 dipoleG− − = − , (5.3) 

and finally the dipole element gain is established at 

 17.12 2.85 7.72 6.55 dBdipoleG = − − =  
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The 3dB beamwidth of the elements at 2.4 GHz is approximately 65 

degrees. 

2. Ground Plane 
The ground plane was built by using adhesive glue to bond copper foil 

coatings to a wooden chip board.  Measuring 32 inches by 12 inches, it was 

designed to have a ground plane spacing in excess of half wavelength from 

antenna elements at the operating frequency of 2.4 GHz.  The required position 

of antenna slots were measured as precisely as possible and slots were carefully 

cut for insertion of the dipole antenna elements.  Although extreme care was 

taken during the entire process, distance errors (horizontal) as well as vertical 

alignment between the elements exists as the slots and mounting of antenna 

elements were made by hand using common household tools. 

 

3. Low Noise Amplifiers (LNA-2700) 
The low–noise amplifier was acquired from RF Bay Inc and is shown in 

Figure 21.  Model LNA–2700 was chosen as it suited our needs in terms of size, 

specifications and its price to performance as shown in Table 7.  

 

Figure 21.   Low–Noise amplifier LNA–2700 from RF Bay, Inc. 
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Parameter Specification Unit Comments 

Frequency Range 2.2 – 2.7 GHz  

Gain 23 dB For operations at  2.4 GHz

Noise Figure +1.7 dB For operations at  2.4 GHz

RF Input Power +13 dBm Absolute Maximum Rating

Table 7.  LNA-2700 Specifications (From [15]). 
 

The verification of the LNAs in terms of its S21 parameters (log and phase 

response) were conducted on the vector network analyzer (VNA) in the 

Microwave Lab.  

 

LNA# Gain (dB) Phase(degrees) Phase Relative to 
LNA 1 (reference) 

1 22.8 85.42 - 

2 24.86 53.35 -32.07 

3 23.02 48.9 -36.52 

4 24.65 57.12 -28.30 

Table 8.  Gain and Response of LNAs. 
 

We observe from Table 8 that the gains of all four LNAs are in-line with the 

specified 23 dB gain from the manufacturer.  Note that the output phase of each 

LNA is different although the same settings and phase were used during testing.  

In an analog implementation, these errors would need to be eliminated by means 

of a phase shifter, connected in-line with each antenna element after the RG-303 

cable.  The analog calibration would be tedious and likely to be erroneous to a 

few degrees.  In the digital architecture, the phase errors from the antenna, LNA, 

RG-303 and demodulator response, are easily eliminated in software during the 

signal processing stage in LabView. 
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4. RG-303 Cables  
The RG-303 cables, 2.5 ft in length, were purchased from Pasterneck 

Enterprises.  The cables were not ordered to be phase-matched as these errors 

can be eliminated during the signal processing stage in LabView. 

Manufactured with a silver covered copper clad steel and shielded with 

sliver covered copper, these cables were selected for its relatively low loss at our 

selected operating frequency of 2.4 GHz.   The specifications state a loss of      

13 dB per 100 ft at 1 GHz and 39 dB per 100ft at 5 GHz.  Interpolated, this gives 

an approximated loss of 0.3 dB for the 2.5 ft cable .   

The cables were tested for losses and phase response on the VNA.  Of 

the four initial cables tested, the second cable was tested to be faulty, with a 

significantly higher loss of -3.85dB and a phase response which did not match its 

length.  This cable was replaced.  The measured cable parameters are shown in 

Table 9. 

 

RG-303 Cable # Losses (dB) Phase(degrees) 
1 -0.622 -153.64 

2* -0.65 -153.53 

3 -0.662 -150.14 

4 -0.625 -153.2 

         2nd Cable was tested defective and replaced                                  

Table 9.  Gain and Phase Response of RG-303 Cables. 
 

5. Demodulator Boards (AD8347-EVAL) 

The technique of quadrature demodulation is first explained in this section 

before the characteristics of the AD8347 demodulator boards [16] are described.   

Bandpass signals can be expressed as 

( ) cos( ) sin( )band I c Q cx t x t x tω ω= −                             (5.4) 
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where Ix is defined as the in-phase component and Qx  is defined as the 

quadrature component.  Decomposing a signal into its in-phase and quadrature 

components acts to preserve the phasor’s complete information.   

 

Figure 22.   Quadrature Type Demodulation of 2-Channel Interferometer    
(After [7]). 

 

For the interferometer shown in Figure 22, the output of the antenna 

elements can be expressed as  

{ }( )( , ) Re ( ) cj t
n nV p t A p e ω=                                      (5.5) 

where n=1,2,3 represents the antenna element index ( )nA p in the polarization 

dependent amplitude and  

( )( ) ( ) ( ) ( )nj p
n n I n Q nA p A p e A p jA pφ= = +                         (5.6) 

The outputs from the antenna elements are passed though the quadrature 

demodulation boards, which are configured as shown in Figure 23. 

Quadrature 
demodulation board 

d2 

Antenna 1 Antenna 2 

Incident Plane Wave 

d1 

dsin(θ) 

θ

Antenna 3 

LO 

VI1 VQ1 VI1 VI1 VQ2 VI2 VI1 VQ3 VI3 

( , )nV p t  
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Figure 23.   Basic Quadrature Demodulation Processing (After [7]). 
 

The local oscillator (LO) provides a pure tone signal at the antenna signal 

frequency.  The LOI signal ( cos( )LOI cV tω= ) is passed through a 90 degree phase 

shift to obtain the quadrature LOQ signal.  

cos( / 2) sin( )LOQ c cV t tω π ω= + = −                              (5.7) 

The antenna signal is fed to the respective mixers to obtain the in-phase 

and quadrature terms 

( , ) ( , )cos( )
1 1( ) [ ( )cos(2 ) ( )sin(2 )]
2 2

I n n c

I n I n c Q n c

V p t V p t t

A p A p t A p t

ω

ω ω

=

= + −
        (5.8) 

( , ) ( , )sin( )
1 1[ ( )sin(2 ) ( )cos(2 )] ( )
2 2

Q n n c

I n c Q n c Q n

V p t V p t t

A p t A p t A p

ω

ω ω

= −

= − + +
     (5.9) 

After filtering with a low-pass filter (LPF), we obtain the baseband terms  

1 1( ) ( ) ( ) cos( ( ))
2 2I n I n n nV p A p A p pφ= =                          (5.10) 

1 1( ) ( ) ( ) sin( ( ))
2 2Q n Q n n nV p A p A p pφ= =                          (5.11) 

Local oscillator 

Antenna signal 

90°

Mixer 

LPF 

VQm VIm 

LPF 

Mixer 
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For a plane wave ( )nA p  is a constant and therefore, we can normalize 

Equations (5.10) and (5.11) to obtain the expressions this line should be at 

margin 

     ( ) cos( ( ))In I n nV V p pφ= =                                    (5.12) 

     ( ) sin( ( ))Qn Q n nV V p pφ= =                                    (5.13) 

Equations (5.12) and (5.13) are referred to as the in-phase and 

quadrature terms of the signal received by antenna element n.  To obtain the 

phase differential between antenna elements 1 and 2,  same here 

1 2
12 1 2 1

1 2

( ) ( ) arctan( ) arctan( ) sinQ Q

I I

V V
p p kd

V V
φ φ φ θ∆ = − = − =            (5.14) 

where d1 is the distance between antenna elements 1 and 2.   

The output I and Q voltages are digitized using an Analog-to-Digital 

Converter (ADC) for subsequent signal processing.  We obtain the equivalent of 

the analog normalized output voltage in Equation (2.4) by taking the cosine of the 

phase differential in Equation (5.14) same 

12 1 12( ) cos( sin( )) cos( )V kdφ θ φ= = ∆                               (5.15) 

The AD8347 demodulator board as shown in Figure 24 was originally 

designed for communication applications, likely for use in a quadrature phase 

shift keying technique.  When operating in automatic gain control (AGC) mode, 

the I/Q–channel differential outputs mapped the phase response on the main 

axes instead of being distributed uniformly around the I/Q circle as the input 

signal phase is altered.   
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Figure 24.   AD8347EVAL wiring connections and mode settings (From [13]). 
 

In order to achieve a linear phase response, the demodulator was re-wired 

for operation in ‘VGIN mode’, where the gain of the system was controlled by 

means of an input voltage at the VGIN pin.  The modification for operating the 

demodulator in VGIN mode was proposed and designed by Bob Broadston.  The 

modifications made to the board are listed in Table 10.   
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Parameter Measures 
taken 

Comments 

Jumper 
LK2 

Opened Disconnects I-channel baseband mixer 
(IMXO, pin 8) from device on-board detector 
input (VDT2, pin 18) 

Jumper 
LK3 

Opened Disconnects automatic gain control voltage 
output (VAGC, pin 19) from the demodulator 
gain control voltage input (VGIN, pin 17) 

Jumper 
LK6 

Opened Disconnects Q-channel baseband mixer 
(QMXO, pin 22) from on-board detector 
input (VDT1, pin 20) 

VDT1&2 Wired Connects both detector input voltages (pin 
20 & 18) to the chip reference voltage output 
of 1.0 V (VREF, pin 14) 

Table 10.  Modifications Made to Operate the AD8347 Demodulator in VGIN 
Mode (After [13]). 

 

The initial setup, LabView program, excel and MATLAB scripts used for 

the characterization of the demodulators were developed by Gert Burgstaller and 

Levent Gezer.  The setup and developments during the initial tests are 

comprehensively covered in [13].  As a direct result of their tests, an optimal 

VGIN voltage of 0.38 volts was found to produce a good compromise between 

linear phase response and magnitude of the I/Q circles.  One setback of 

operations in VGIN mode is the occurrence of direct current (DC) offsets that are 

unique for each demodulator board.  

Figure 25(a) displays phase data for the ten AD8347 demodulator boards 

that were characterized by Burgstaller and Levent for use in their respective 

projects.  Figure 25(b) shows the same I/Q data centered at origin by subtracting 

the circle center values.   
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Figure 25.   Plotted AD8347 Demodulator Phase Characteristics (From [12]). 
 

For our demonstration array, four demodulator boards were re-wired and 

modified for operations in VGIN mode.  Using a VGIN of 0.38 volts, the boards 

were characterized.  The initial calibration conducted provided reasonably good 

results and the results from two additional calibration runs were in close 

agreement.  Table 11 tabulates the phase response of these boards and the final 

calibration offsets used for the demonstration array.   

 

Board 
No. 

Diameter 
∆I/∆Q [mV] 

Off-center 
I0/Q0 [mV] 

Measurement 
No. & Date 

1 ∆I 85.7 
∆Q 86.9 

I -1.3231 
Q +50.2538 02-Sep-06 

2 ∆I 97.6 
∆Q 99.1 

I -24.6154 
Q +48.5154 02-Sep-06 

3 ∆I 84.4 
∆Q 82.2 

I -36.8769 
Q +47.5154 02-Sep-06 

4 ∆I 95 
∆Q 96.9 

I -49.3615 
Q +51.6308 02-Sep-06 

Table 11.  AD8347 Phase Response. 
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6. Power Splitter 
A 1:4 power splitter is used to split a single local oscillator signal into four 

outputs which are supplied to the four demodulator boards.  During the initial 

measurements, the relative phase difference was in the region of 2 to 4 degrees, 

but this was found to have resulted from uneven tightening of the SMA joints, an 

issue resolved by using a fixed torque wench to ensure a uniform tightness 

across all joints.  The parameters of the power splitter are shown in Table 12. 

 

Channel # Losses (dB) Phase(degrees) Relative Phase 
1 -6.5 -46.33 - 

2 -6.47 -45.9 +0.405 

3 -6.48 -46.72 -0.4 

4 -6.5 -47.04 -0.67 

Table 12.  Parameters of Power Splitter. 
 

7. RG-58 Cable 
The RG-58 cables, 2.5 ft in length, were purchased from same 

manufacturer as the RG-303 cables; Pasterneck Enterprises.  These cables 

connect the differential outputs from the demodulator board to the NI-9215 

ADCs.  There is no requirement for the use of low-loss or phase-matched cables 

as the differential I/Q outputs from the demodulator are in DC voltage.  For each 

demodulator board, four RG-58 cables are used.   

 

8. National Instrument Modules 
A total of three types of NI modules are used in the demonstration array, 

including 4 ADCs, a chassis to house the ADCs, and the main controller, which is 

a field programmable gate array (FPGA) system as shown in Figure 26.    

• NI cRIO–9004 Real-Time Controller with 64 MB DRAM, 512 MB 

CompactFlash, 

• NI cRIO–9101 4-Slot, 3 M Gate CompactRIO Reconfigurable 

Embedded Chassis, and 
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• NI–9215 4-Channel, 100 kS/s, 16-bit, ±10 V Simultaneous 

Sampling Analog Input Module. 

                     
(a) NI cRIO-9004        (b)  NI cRIO-9101     (c)  NI-9215 

Real Time Controller    4-Slot, cRIO Reconfigurable Embedded Chassis        ADC, Analog Input 

Figure 26.   NI Modular Systems Used for Demonstration Array 
(From [17-19]). 

 

In order to operate, control and communicate to the FPGA devices, 

LabView 8.0, a software program developed by National Instruments, was used.  

While it is possible to load the entire control and signal processing program into 

the FPGA, a host virtual instrument (VI) program running off a laptop computer 

was used for the signal processing.  Implementing the signal processing on the 

host computer allows for changes to be made to the program or algorithm without 

having to compile and download the new program to the FPGA, a process that 

takes approximately 30 minutes for the program used for the demonstration 

array.  In our setup, the FPGA program simply initializes the modules, calibrates 

them, and transfers the digitized I/Q data from the demodulator boards to the 

host computer for signal processing. 

Version 8 of the software (see Figure 27) includes the capability to embed 

MATLAB scripts directly into the LabView program.  This capability is an 

important aspect of the software as it allows for real-time complex signal 

processing and algorithms to be implemented in MATLAB code instead of having 

to process the data off-line.   
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Figure 27.   LabView 8.0 – Main Control Software. 
 

One of the main challenges of using the LabView software, besides the 

step learning curve, was the ‘instability’ of the embedded MATLAB scripts.  There 

were numerous occasions where the LabView program would show error 

messages relating to the MATLAB script.  Small changes to the script such as 

changing the value of a variable are at times enough to halt the entire host 

program.  Version 8.2 of the LabView will be procured by the school in December 

2006 and should solve these instability issues in the initial version 8.0 release. 

 
9. Power Supply Unit 
The power supply unit, model CP323-A Dual Output, shown in Figure 28, 

was purchased from CONDOR DC power supplies and provides two linear 

controlled outputs of 5 volts and 12 volts. The power supply unit was 

manufactured for OEM use and did not include any wiring harnesses or cables 

for powering the unit itself.  Wiring for power distribution had to be added for our 

application.  In order to provide the demodulator boards with a VGIN of 0.38V, 

Bob Broadston designed and built a variable voltage supply by using the 12V 

source from the power supply unit.     
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Figure 28.   Dual-Output Power Supply Unit. 
 
 
C. IMPLEMENTING AND TESTING RSNS ALGORITHM IN LABVIEW 

The MATLAB simulations provided a basis for starting the software 

development for the demonstration array.  As mentioned previously, all the NI 

modules were controlled by means of the LabView program.  The block diagram 

in Figure 29 shows the signal processing for the determination of estimated AOA. 
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Figure 29.   Block Diagram for RSNS Signal Processing. 
 

The program consists of two major segments.  The first segment deals 

with initializing and calibrating the modules and subsequently sampling and 

digitizing the I/Q differential voltage outputs from the demodulator boards.  The 

second segment deals with the signal processing.  The I/Q and rotational offsets 

are added to the raw I/Q signal and a moving average of 50 data points was 

used to calculate the signal phase.  These phase data are fed into an embedded 

MATLAB script for the RSNS-algorithm implementation.   

Data from FPGA 

Add offsets to center demodulator 
response and calculate antenna 

phase from I&Q data

Calculate phase differentials for 
each channel 

Add phase adjustment terms to 
each channel  

Compare to look up table to 
determine RSNS bin number  

Calculate estimated AOA and 
resolution of RSNS bin  
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At the early stages, the LabView program development was conducted in 

its two separate segments, in two separate virtual instrument (VI).  For the first 

segment, the Human Machine Interface (HMI), shown in Figure 30, was designed 

to display and plot key information such as the instantaneous and averaged I/Q 

data. 

 

 

Figure 30.   HMI for Initial Development (LabView Front Panel). 
 

The second segment shown in Figure 31, where the main interest was to 

embed the RSNS-algorithm as a MATLAB script, was initially developed as a 

‘LabView Simulator’ for testing of the RSNS-algorithm at a time when the 

hardware was not ready.  The signal AOA, phase errors and antenna element 

distance errors were programmed as user inputs.  The embedded MATLAB 

script shown in Figure 32 and 33 calculates the phase differentials, expected 

normalized voltages followed by the estimated AOA.  This allowed testing the 
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robustness of the algorithm and provides a comparison of the theoretical phase 

differentials versus that obtained on the demonstration array.  

 

 

Figure 31.   LabView Simulator for RSNS-Algorithm (Front Panel). 
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Figure 32.   LabView Block Diagram for LabView Simulator. 

 
 

On satisfactory testing on both LabView VI for the hardware and RSNS-

Algorithm, the programs were combined, with the phase information fed as inputs 

into the MATLAB script. 
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Figure 33.   LabView Block Diagram after Combining both Vis. 
 

D. SUMMARY 
In this chapter, we have described both the hardware and software 

aspects of implementing the RSNS-based DF demonstration system.  In the next 

chapter, we shall cover the results and analysis of the tests conducted on the 

demonstration system. 
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VI. RESULTS AND ANALYSIS – ANTENNA ARRAY USING 
MODULI {7 15 29} 

The assembly of the hardware components and initial testing of the RSNS 

algorithm, which was embedded as a MATLAB script in LabView, was completed 

in September 2006.  In this chapter, the observations, results and analysis are 

listed in chronological order. 

 

A. CALIBRATION AND PREPARATION TESTS 
The demodulator calibration offsets, listed in Table 11, were used to 

center the demodulator I/Q response to provide a linear phase response.  Each 

demodulator board was tested after calibration.  The key observations and 

results of the tests conducted in the Microwave Lab are: 

 

1. Centering I/Q Response of Demodulator Boards 
The phase errors of the demodulator boards were measured by 

subtracting the demodulator response versus the input signal phase from the 

VNA.  Errors up to 9 degrees were still observed on the individual boards even 

after several rounds of calibration and fine-tuning.  Errors up to 15 degrees were 

observed when the phase differential was measured by taking the phase 

difference between the reference antenna element to the respective channel 

antenna.  The I/Q offsets worked well for various input RF powers but needed to 

be re-calibrated if the VGIN (and therefore gain) on the demodulator board was 

varied.    Same here 

 

2. Rotation of Phase Response in Demodulator Boards 
A broadside signal was simulated by feeding the output from the VNA 

through a 4-way power splitter to each LNA.  In order to calibrate the 

demonstration array for a correct estimated AOA for a signal from broadside, a 

second rotational offset is required.  The rotational offsets were used to provide a 
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zero phase reading for signal arriving at broadside.  With all antenna phases 

corrected to zero, all 3-channel phase differentials were likewise zero.  It was 

observed that the rotational offsets changed from day to day, and at times even 

intraday, albeit at smaller amounts.  Each time the demonstration array was 

tested, a short calibration to update the rotational offsets was required.    

 

3. Noise of Demodulator Boards 
The overall noise in the demonstration array results in large swings in the 

instantaneous I/Q differential voltage outputs of the demodulator.  In order to 

reduce these large errors, a moving average was added in the signal processing 

to smooth out the I/Q data.  An initial moving average of 1000 points was used 

for the calibration process to determine the I/Q offsets.  The calibration program 

only runs one ADC at a time, allowing it to run relatively swiftly and collect the 

required 1000 data points.  As the LabView program was expanded to 

accommodate 4 elements, the program speed dropped significantly.  The moving 

average was subsequently dropped to a 50 data point average as it improved the 

program speed without significant adverse impacts on the smoothening 

capability.  With a 50 point moving average, phase differential errors up to 20 

degrees were observed, with errors usually capped to within 10 degrees.  It 

should be noted that the noise error is cumulative with the I/Q center errors.  By 

varying the signal phase through phase shifters, total phase differential errors of 

up to 30 degrees were observed at times. 

 

4. Power of Local Oscillator Input to Demodulator Board 
The specifications for the demodulator board recommend a LO input 

power of 0 dBm to –10 dBm.  It was noted that the phase response of the 

demodulator boards shifted when the LO power was varied.  All calibrations for 

the boards were conducted at –8 dBm and this power was maintained at a 

similar level when testing was conducted in the anechoic chamber.    
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B. INITIAL TESTS AT ANECHOIC CHAMBER 
Testing at the anechoic chamber began in early October 2006.  During the 

initial tests, the demonstration array did not work and provided erroneous 

estimated AOA.  The LabView simulation program was used to compare the 

theoretical phase differentials versus those obtained from the demonstration 

array.  The numbers did not match. The array was eventually brought back into 

the lab for trouble-shooting.  The key observations and analysis on the initial test 

are: 

 

1. Alignment of the Array 
It was not possible to physically align the reference antenna to the 

transmit horn antenna in a direct line of sight.  The DF antenna had to rest 

balanced on the pedestal and was lower than the transmit antenna by 

approximately four inches.  Given the weight of the DF system and the size of the 

pedestal, the center of transmit antenna was aligned to the center of the DF 

antenna array rather than the reference antenna. 
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Figure 34.   Testing of Demonstration Array in Anechoic Chamber. 
 

2. Construction of Anechoic Chamber and RF Reflections 
The chamber was designed mainly for peak absorption at a frequency of 3 

GHz.  At our operating frequency of 2.4 GHz, part of the transmitted signal would 

reflect off the chamber walls.  The chamber was not constructed in a full 

rectangular shape due to space constraints.  The right wall, shown in Figure 34, 

was at an oblique angle.  This causes reflections from this wall to fall on the array 

either as multi-path when the array was facing the wall, or as interference into the 

cards and cables when the rear of the DF system is facing the wall.  It is difficult 

to quantify the adverse effects on the DF accuracy of the demonstration array.    
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3. Demodulator Rotation Calibration 
The rotation calibration values had to be updated each time the system 

was powered up, with the calibration values changing on an intra-day basis.  This 

is in-line with the observations during the lab tests. 

 

4. Phase Differentials on Changing Signal AOA 
The phase differentials obtained from the DF array were compared to the 

LabView simulator.  It was observed that there were very large changes in the 

phase differentials as the AOA was varied.  This was eventually found to be a 

simple coding error as the average phase data from each element was not 

converted to radians as required in MATLAB.  However, the DF system still did 

not produce correct AOA estimates after this error was corrected. 

 

5. Plane Approximation of Spherically Propagating RF Signal 
In the chamber setup, we are approximating the spherically expanding RF 

signal from the transmit antenna as a plane wave.  This gives rise to significant 

phase errors if the antenna array is operating in the near-field.  Due to the 

relative size of the antenna array to the separation distance between the transmit 

and receive antennas, the DF system is almost in the near-field.   

 

 

 

 

 

 

 
Figure 35.   Plan View Showing Plane Wave Approximation. 

 

Transmit 
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Array 
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Based on the operating frequency of 2.4 GHz and the physical dimensions 

where the center of the transmit antenna is aligned with the center of the 

demonstration array, the phase difference at the antenna at the ends of the array 

was –15 degrees as compared to the phase at the center of the array. 

This error due to the plane wave approximation was largely calibrated out.  

When the rotational offsets of the demodulator response are determined in the 

chamber, the phase error due to the plane wave approximation is completely 

eliminated.  However, this is only true at broadside, where the rotational offsets 

are determined.  As the pedestal is rotated to change the signal AOA, a small 

error still exists. 

 

C. TROUBLESHOOTING AT MICROWAVE LAB 
After several attempts to no avail to successfully operate the 

demonstration array at the chamber, the DF system was brought back into the 

microwave lab for testing.  The following faults were found: 

 

1. Demodulator Operating Mode 
A through check on the system revealed that all demodulator boards, less 

the board used for the reference antenna, had jumper LK3 closed instead of 

open.  These boards were wired for AGC mode instead of VGIN mode.  This 

error was quickly corrected.   

 

2. Defective Components 
All the system components were tested again for defects.  The dipole 

antenna for the reference antenna was found to be faulty due to a crack in the 

soldering which may have occurred as we moved the DF system to the lab.  

Another dipole antenna was salvaged to replace the defective antenna element. 

Another round of calibration was also conducted with the RF and the LO 

input powers to the demodulator boards tweaked to –30 dBm and –8 dBm 
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respectively to match the exact testing conditions in chamber.  This yielded I/Q 

calibrations that matched the previous tests.   

 

D. SECOND ROUND OF ANECHOIC CHAMBER TESTS 
With the detected errors on the DF system corrected, the DF array was 

brought up to the chamber for the second round of tests.  Anxious enthusiasm 

rapidly receded and became disappointment as the DF system continued to 

produce erroneous estimated AOA results, even at small AOA.  With the 

hardware thoroughly tested, trouble-shooting efforts turned to the software and 

the RSNS-algorithm.  The fault was finally found to reside in the how the phase 

differentials were determined.  In the RSNS algorithm, the first modulus 

corresponds to d1, the distance of the longest baseline.  In the implementation, 

the phase differentials were assigned in the opposite manner, with the phase 

differentials for the longest and shortest baselines inter-changed.  Once this error 

was corrected, reasonably good AOA estimates were obtained.  The first set of 

results was collected at 5 to 15 degree intervals over +65 degrees AOA.  The 

results are tabulated in Table 13 and plotted in Figures 36 and 37. 

 

Actual AOA Estimated AOA Error Error Squared 
-65 -70.68 -5.68 32.2624 
-55 -59.61 -4.61 21.2521 
-45 -47.81 -2.81 7.8961 
-30 -31.95 -1.95 3.8025 
-15 -15.81 -0.81 0.6561 
-5 -5.298 -0.298 0.088804 
0 0.129 0.129 0.016641 
5 6.07 1.07 1.1449 

10 10.774 0.774 0.599076 
15 15.546 0.546 0.298116 
25 26.339 1.339 1.792921 
30 30.149 0.149 0.022201 
45 44.825 -0.175 0.030625 
55 53.087 -1.913 3.659569 
65 61.718 -3.282 10.77152 

Table 13.  Initial Results from Demonstration Array. 
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Actual AOA vs Estimated AOA
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Figure 36.   Initial Results from Demonstration Array. 
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Figure 37.   Initial Results – AOA Estimation Error. 
 

Error = 2.37° RMS 
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The initial results were taken without ensuring that the DF antenna array 

was squared in parallel with the transmit horn antenna.  Data points taken were 

also in large increments.  Examining Figure 37, it can be seen that the AOA 

estimation error increases as the AOA is increased.  Gross errors, which are very 

large erroneous AOA estimates, were not observed.  The overall DF accuracy, 

defined in root mean square (RMS), was 2.37 degrees RMS. 

 

E. THIRD ROUND OF ANECHOIC CHAMBER TESTS 
Efforts were taken to improve the accuracy of the DF system.  Several 

steps were taken, including: 

 

1. Raising the DF Array Platform 
The entire array was raised by 4 inches as shown in Figure 38.  This was 

done to line up the height of the DF array to transmit horn antenna.  It also eased 

the connection of the LO signal, Ethernet cable and power cables from the DF 

system into the pedestal cavity.  

 
Figure 38.   Front View of DF System on Pedestal. 

 
 
 

Array raised by 4 inches
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2. Grounding Unused Demodulator Terminals 
Small voltages were detected at the unused terminals of the demodulator 

boards, varying from 5 to 15 mV.   These unused terminals were connected to 

ground as shown in Figure 39. 

 

Figure 39.   Grounding Unused Demodulator Terminals. 
 

3. Shielding for DF Array  
In order to minimize the effects of the transmitted RF signal from reflecting 

off the walls and adversely affecting the system, a crude shielding was made 

from metal netting and draped over the entire DF system and connected to 

ground as shown in Figure 40. 

 

Connected 
to ground 
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Figure 40.   Shielding for DF System. 
 

4. Aligning DF Array with Transmit Antenna 
In order to align the DF array to the transmitting horn antenna, the 

diagonal distances were measured as shown in Figure 41 and the DF array 

adjusted to equalize the distances.  This provides an alignment accuracy of 

approximately one degree.  

 

 

 

 

 

 

Figure 41.   Aligning DF Array to Transmit Antenna. 
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With the modifications complete, the DF array performance was tested 

again and data was taken at 5 degree intervals over +60 degrees as shown in 

Table 14 and plotted in Figure 42.   

 

AOA eAOA Error Error Squared 
-60 -61.1785 1.178534 1.388942 
-55 -56.6769 1.676863 2.81187 
-50 -51.401 1.401016 1.962846 
-45 -46.6753 1.675337 2.806754 
-40 -40.9504 0.950397 0.903254 
-35 -36.3234 1.323405 1.751401 
-30 -31.0487 1.048654 1.099675 
-25 -25.7652 0.765232 0.58558 
-20 -19.8824 -0.11764 0.013838 
-15 -15.0113 0.011268 0.000127 
-10 -10.2491 0.249091 0.062046 
-5 -5.03923 0.039232 0.001539 
0 0.1209 -0.1209 0.014617 
5 5.039232 -0.03923 0.001539 

10 10.77408 -0.77408 0.599201 
15 15.54636 -0.54636 0.29851 
20 19.88236 0.117637 0.013838 
25 25.76523 -0.76523 0.58558 
30 30.74788 -0.74788 0.559322 
35 35.68534 -0.68534 0.469684 
40 36.32341 3.676595 13.51735 
45 43.74432 1.25568 1.576732 
50 49.37691 0.623088 0.388239 
55 52.65951 2.34049 5.477893 
60 58.60581 1.394192 1.943771 

Table 14:  DF Performance – 2nd Set of Results 
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Figure 42.   AOA Estimation Error – 2nd Set of Results. 
 

The plot of AOA estimation error (Figure 42) shows that the errors at large 

AOA have been significantly reduced and shows that steps taken to minimize 

errors were successful.  The overall error has been reduced to 1.25 degrees 
RMS and compares favorably against the initial results of 2.37 degrees RMS.  

The characteristics of the error from both tests are similar; AOA estimation error 

increases correspondingly with signal AOA.   

The main error sources likely come from a combined contribution from 

antenna spacing errors and phase errors from the demodulator boards.  Since 

these errors were minimized as much possible in during the design and building 

stages, we have optimized the DF array performance within our means, given the 

constraints of the materials and hardware available. 
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F. UPDATING HMI AND IN-DEPTH DF PERFORMANCE 
Although gross errors were not captured in results of the 2nd data set, 

several gross errors were observed as the signal AOA was scanned across the 

FOV.  These gross errors occurred in the region around +20 and +40 degrees.  It 

was necessary to take a set of results with a higher resolution to provide a 

clearer picture on the performance of the DF system.   

 

1. Updating Human Machine Interface 
The intention was to capture a data set with AOA increments of 0.5 to 1 

degree intervals over the FOV.  This would be very time consuming as the 

pedestal control program and the LabView program for the DF system were 

housed on two separate computers and was not linked.  All data sets were 

previously recorded by hand.   

It was timely to update the HMI, which up to this point, was largely 

designed for troubleshooting and displaying system data.  The HMI was re-

organized for a friendlier user interface to show only key information.    

Two ‘write-to-data-file’ buttons were also added.  The first button captures 

all 16 raw differential outputs without the center or rotational offsets.  This 

provides real data to be captured for post-analysis to determine the exact phase 

differential errors present in the DF system.  The data would also be used to 

optimize the I/Q center offsets or testing the performance of virtual moduli sets. 
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Figure 43.   Updated HMI with Write-to-File Capability. 
 

The new HMI as shown in Figure 43 provides a very ‘clean’ operating 

environment and clearly displays the estimated AOA and the respective angular 

bin resolution size.  Phase information is still kept on the HMI as this is required 

for the calibration of the rotation offsets. 

 

2. Detailed DF Performance 
With the HMI updated, a detailed data set of the DF performance was 

captured and the AOA data saved to a LabView data file.  The data file was 

exported to excel for plotting.   

 



76 

 

Figure 44.   DF Performance – 3rd Set of Results. 
 

Examining the results as shown in Figure 44, it is evident that gross errors 

occur at a number of AOAs.  In total, there were 16 gross errors out of 208 data 

points, resulting in a probability of gross error of 7.5%.  Taking these gross errors 

into consideration, the overall DF accuracy has dropped significantly to 12.5 

degrees RMS.  If the gross errors were eliminated, the DF accuracy is a 

remarkable 0.7 degree RMS with a baseline of 66 cm. 

 

G. SUMMARY 
The hardware and software for the demonstration system was 

successfully implemented.  Excellent results were achieved with the digital 

architecture which provided flexibility signal processing.  Some gross errors were 

observed, likely resulting from noise in the demodulator boards and antenna 

spacing errors.  In the next chapter, we will examine the virtual spacing concept 

and present the results of a second array built for evaluating the concept.   
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VII. RSNS INTERFEROMETRY WITH VIRTUAL SPACING 

In this chapter, we will first review the method of designing a two-channel 

virtual spacing RSNS interferometer as introduced by [7] and then extend the 

concept for N-channel systems.   

At the onset, the virtual spacing concept was found to be only applicable 

for a two-channel system.  In working with our original antenna array which used 

a PRP moduli set of {7 15 29}, many months were spent attempting to extend the 

virtual spacing concept to accommodate a three-channel system, to no avail.  

Nonetheless, the plan was to proceed in building the demonstration DF system.  

The virtual spacing concept for the three-channel system would then be used on 

the same antenna array when a suitable algorithm for the three channel system 

was found.  

The breakthrough came about in late October, where a closed form 

solution applicable for N-channel systems was found for non-PRP moduli sets.  

The original hardware and control software used for the first array were modified 

to accommodate a new 3-channel antenna array which had to be built as a 

different set of non-PRP moduli was used.  The modifications and performance 

of the virtual spacing DF system are presented in sections C and D.  

 

A.   TWO CHANNEL RSNS INTERFEROMETRY WITH VIRTUAL SPACING 
For interferometry, a channel is composed by taking measurements of the 

phase differential between the reference antenna r and antenna element n. The 

in-phase and quadrature output for a channel can be defined as  

( ) cos( sin ) cos( )
cos( ( ))cos( ( )) sin( ( ))sin( ( ))

In n rn

n r n r

In Ir Qn Qr

V kd
p p p p

V V V V

θ θ φ
φ φ φ φ

= = ∆

= +

= +

                 7.1) 
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( ) sin( sin ) sin( )
sin( ( ))cos( ( )) cos( ( ))sin( ( ))

Qn n rn

n r n r

In Ir Qn Qr

V kd
p p p p

V V V V

θ θ φ
φ φ φ φ

= = ∆

= −

= −

               (7.2) 

where dn is the distance between element n and the reference element r. 

Consider a two-channel RSNS interferometer with the moduli pair m1 and 

m2 with the dynamic range M̂ .  The I and Q terms for the two channels can be 

combined in the following manner 

' '
1 1 2 1cos( ( )sin ) cos( sin )IV k d d kdθ θ= + =  (7.3) 

' '
1 1 2 1sin( ( )sin ) sin( sin )QV k d d kdθ θ= + =  (7.4)  

' '
2 1 2 2cos( ( )sin ) cos( sin )IV k d d kdθ θ= − =  (7.5) 

' '
2 1 2 2sin( ( )sin ) sin( sin )QV k d d kdθ θ= − =  (7.6) 

These new voltages can now be regarded as the in-phase and quadrature 

components of a new 2-channel interferometer with virtual spacing of d1
’ and d2

’.  

In designing the distances between elements, the following relationship is used 

^

2 4i i
i

Md n
Nm

λ λ
= =            (7.7) 

For a fixed operating frequency and using the same moduli set, the 

wavelength and dynamic range are constants.  Moduli sets are usually defined 

from the smallest modulus number sequentially to the largest modulus numbers.  

Since the modulus is a denominator in Equation (7.7), it should be noted that the 

distance d1 is, therefore, the longest distance in the antenna array.  The new 

virtual spacing of ( '
2 1 2d d d= − ) is, therefore, a positive value.  Choosing the 

relationship between the moduli as 

2 1m hm=                (7.8) 

results in the ratio h larger than unity as m2>m1.  Expanding the new virtual 

spacing using Equation (7.7) results in 
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'
' '
1 1 2 '

1 2 2 1

ˆ ˆ ˆ1 1 1
4 4 4
M M h Md d d
N m m N m Nm

λ λ λξ ξ ξ
⎛ ⎞ ⎛ ⎞+

= + = + = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

            (7.9) 

'
' '
2 1 2 '

1 2 2 2

ˆ ˆ ˆ1 1 1
4 4 4
M M h Md d d
N m m N m Nm

λ λ λξ ξ ξ
⎛ ⎞ ⎛ ⎞−

= − = − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

           7.10) 

Simplifying the equations results in  

' '
' ' ' '
1 2' '

2 1 2 2

ˆ ˆ1 1ˆ ˆh M h Md M and d M
m m m m

ξ ξ ξ ξ
⎛ ⎞ ⎛ ⎞+ −

= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

        (7.11) 

Dividing these two equations yields   

'
' '2
2 1'

1

1 1
1 1

h m hm m
h m h
+ +⎛ ⎞ ⎛ ⎞= ⎯⎯→ =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

                    (7.12) 

The virtual spacing moduli pair {m1
’, m2

’} can now be calculated by 

Equation (7.12) based on h, the relationship between the original, real spacing 

moduli pair {m1, m2}.  Values of m1
’ (an integer) must be selected such that m2

’ is 

also an integer.  On determining the new dynamic range, the scaling factor for 

the virtual spacing interferometer can be derived from Equation (7.11) and 

subsequently the FOV from the new scaling factor.   

It is generally possible to obtain virtual spacing moduli pairs {m1
’, m2

’} that 

are both integers, as only one ratio maps their relationship.  Higher multiples of 

the new moduli pair can also be used to achieve increasingly higher resolution, 

so long as its FOV is within acceptable limits and the system SNR is able to 

support reasonably error-free RSNS coding. 

Several examples have been worked out in [7] with the consideration of 

original and virtual moduli which are pairwise relatively prime (PRP) or otherwise. 

 

B.   N-CHANNEL RSNS INTERFEROMETRY WITH VIRTUAL SPACING 
For error-free coding, we require RSNS moduli sets to be comprised of 

integer-valued modulus.  In designing a two channel system with virtual spacing, 

we need only to contend with a single ratio ( 1) /( 1)h h+ −  and select the first 
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modulus that ensures that the second modulus is also integer-valued.  In an N-

channel system, we need to contend with (N-1) ratios.  Depending on the 

relationships between the individual modulus, it may not be possible to select m1
’ 

such that all subsequent moduli are also integer-valued.   

The N-channel algorithm operates only for original moduli sets where the 

ratio between the first modulus and the subsequent moduli is h(n-1)mn.  The 

following relationship between the moduli would be 

 
m1 = hm2 = h2 m3 ....=h(n-1)mn                                    (7.13)  

Note that this relationship is defined differently from the two channel case, 

where (m2=hm1).  Following a similar treatment as in the two channel system, we 

obtain  

 
'

' '
1 1 2 '

1 2 1 1

ˆ ˆ ˆ1 1 1
4 4 4
M M h Md d d
N m m N m Nm

λ λ λξ ξ ξ
⎛ ⎞ ⎛ ⎞+

= + = + = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

           (7.17) 

'
' '
2 1 2 '

1 2 1 2

ˆ ˆ ˆ1 1 1
4 4 4
M M h Md d d
N m m N m Nm

λ λ λξ ξ ξ
⎛ ⎞ ⎛ ⎞−

= − = − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

            (7.15) 

'
3 1 2 3

1 2 3

2 '
'

'
1 3

ˆ 1 1 1
4

ˆ ˆ1
4 4

Md d d d
N m m m

M h h M
N m Nm

λ ξ

λ λξ ξ

⎛ ⎞
= − − = − −⎜ ⎟

⎝ ⎠
⎛ ⎞− −

= =⎜ ⎟
⎝ ⎠

                   (7.16) 

. 

. 

.   

'
1 2

1 2

( 1) '
'

'
1

ˆ 1 1 1... ...
4

ˆ ˆ1 ...
4 4

n n
n

n

n

Md d d d
N m m m

M h h M
N m Nm

λ ξ

λ λξ ξ
−

⎛ ⎞
= − − = − − −⎜ ⎟

⎝ ⎠
⎛ ⎞− − −

= =⎜ ⎟
⎝ ⎠

               (7.17) 
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Re-arranging and simplifying the formulas gives 
'

'
'

1 1

ˆ1ˆ h MM
m m

ξ ξ
⎛ ⎞+

=⎜ ⎟
⎝ ⎠

           (7.18) 

'
'

'
1 2

ˆ1ˆ h MM
m m

ξ ξ
⎛ ⎞−

=⎜ ⎟
⎝ ⎠

        (7.19) 

. 

. 

. 

2 ( 1) '
'

'
1

ˆ1 ...ˆ
n

n

h h h MM
m m

ξ ξ
−⎛ ⎞− − −

=⎜ ⎟
⎝ ⎠

                     (7.20) 

 
Dividing Equation (7.18) by its successive equations yields  

'
2
'
1

1
1

h m
h m

+⎛ ⎞ =⎜ ⎟−⎝ ⎠
                                      (7.21) 

'
3

2 '
1

1
1

mh
h h m
+⎛ ⎞ =⎜ ⎟− −⎝ ⎠

                                  (7.22) 

. 

. 

. 
'

2 ( 1) '
1

1
1 ...

n
n

h m
h h h m−

+⎛ ⎞ =⎜ ⎟− − −⎝ ⎠
      (7.23) 

 
Upon examination of Equations (7.21 to 7.23), one will find that the 

denominator will always be positive as h is <1 based on the relationship outlined 

in Equation (7.13). 

 

 

 



82 

C. VIRTUAL SPACING COMBINATIONS FOR N-CHANNEL SYSTEMS 
In the initial setup for the N-channel system virtual spacing, we have 

defined in Equation (7.14) through to Equation (7.17), a specific combination of 

real antenna spacing for mapping into virtual spacing.  Other combination sets 

can be explored to achieve desired design requirements. 

The longest virtual baseline that can be achieved is the summation of all 

real antenna spacings.  Correspondingly, the shortest virtual baseline is where 

we subtract the all other spacings from the longest baseline.  Other combinations 

exist and they increase with the number of channels/baselines used.   

In solving for the N-channel virtual spacing, we chose a linear combination 

for the moduli relationship.  While this allows for a closed form solution for 

linearly spaced antenna elements, it cannot be applied to PRP moduli sets.  

Different moduli relationships such as  

1 2 3m hm km= =      (7.24) 

where (k/h) is an integer, may also be possible extensions to the technique laid 

out and provide a solution for solving PRP moduli sets. 

 
D. DESIGN EXAMPLE FOR 3-CHANNEL RSNS INTERFEROMETRY WITH 

VIRTUAL SPACING 
Consider the case of m1=4, m2=8 and m3=16. Let the scaling factor ξ be 

unity.  For this system, the dynamic range 
^

M  is 53 with a broadside resolution of 

2.16 degrees.  The ratio between moduli is h=1/2.  Applying Equations (7.21, 

7.22), we obtain the relationship between the new virtual spacing moduli as 

' ' ' '
2 1 3 13 6m m and m m= =                          (7.25) 
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Some possible moduli sets and their key parameters are shown in Table 

15.  Additional virtual spacing sets can be used so long as their moduli conform 

to the relationship as given in Equation (7.25).   

 

Moduli Set Element 
Distances 

Dynamic 
Range 

Broadside 
Resolution 

Scaling 
Factor 

FOV 

{4 8 16} d1 = 0.1406    

d2 = 0.0703    

d3 = 0.0352 

53 2.16° 1 +90 

{3 9 18} d1
’ = 0.2105   

d2
’ = 0.0702   

d3
’ = 0.0351 

59 1.92° 1.01059 +81.7 

{9 27 54} d1
’ = 0.2083   

d2
’ = 0.0694   

d3
’ = 0.0347 

167 0.64° 1.0711 +69 

Table 15.  Moduli Sets for 3-Channel Virtual Array. 
 

The transfer function of the original set and the two virtual spacing sets, in 

an ideal case where noise is absent, are plotted in Figures 45 to 47.  
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Figure 45.   Transfer Function of Real Spacing using Moduli {4 8 16}. 
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Figure 46.   Transfer Function of Virtual Spacing using Moduli {3 9 18}. 
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Figure 47.   Transfer Function of Virtual Spacing using Moduli {9 27 54}. 
 
In this section, the virtual spacing concept and the steps for implementing 

2-channel systems and N-channel systems have been presented.  For a 2-

channel system, we can apply the virtual spacing concepts to both PRP and non-

PRP moduli sets as we only need to deal with a single ratio and integer-valued 

moduli can usually be obtained.  The virtual spacing concept was extended to N-

channel systems with non-PRP moduli.  A N-channel solution for PRP moduli 

has yet to be discovered.   

 

E. BUILDING AND TESTING THE VIRTUAL SPACING DF SYSTEM 
On completion of the performance tests on the first DF antenna array, a 

second antenna was built to test the virtual spacing concept using the design 

example presented in Section D.  A moduli set of {4 8 16} is used for the real 

array and the moduli set of {9 27 54} is used for the virtual spacing concept.  The 

key data of the RSNS parameters are presented in Table 16 and the array is 

shown in Figure 48.  
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Moduli Set Element 
Distances 

Dynamic 
Range 

Broadside 
Resolution 

Scaling 
Factor 

FOV 

{4 8 16} 

Real 

d1 = 0.1406    

d2 = 0.0703    

d3 = 0.0352 

53 2.16° 1 +90 

{9 27 54} 

Virtual 

d1
’ = 0.2083   

d2
’ = 0.0694   

d3
’ = 0.0347 

167 0.64° 1.0711 +69 

Table 16: Moduli Sets for 3-Channel Virtual Spacing Concept. 
 

Figure 48.   Antenna Array for 3-Channel Virtual Spacing Concept. 
 

The length of the array was 14 cm, significantly shorter as compared to 

the first array with a length of 66 cm.  Besides building a new ground plane, four 
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additional dipole antenna elements were tested and used for the new array.  The 

LNAs were re-located and aligned with the new antenna locations.   

The virtual spacing algorithm is a simple iterative process.  The estimated 

AOAs are calculated in sequence, starting with the real spacing.  The estimated 

AOA from the real spacing was the most reliable and was defaulted as the initial 

accepted estimated AOA.  The selection criteria for reported estimated AOA was 

based on a user defined threshold, specified in terms of the number of resolution 

cells of the current accepted estimated AOA.  A simplified signal processing flow 

diagram shown in Figure 49 explains the process. 

     

 

Figure 49.   Simplified Flow Diagram for Virtual Spacing Signal Processing. 
 

Detailed simulations in MATLAB with respect to DF accuracy under noisy 

conditions and the effects of antenna element spacing errors were not conducted 

due to time constraints.  The LabView simulator program shown in Figure 50 was 

Data from cRIO controller

Report final AOANo – report eAOA1 

No – report eAOA2 

Yes 

Yes – report eAOA3 Within 2nd  
AOA resolution 

Bin? 

eAOA2 within 
eAOA1 resolution 

Bin? 

• Add offsets and calculate φ of each antenna element 
• Determine phase differentials 
• Add phase adjustment terms 
• Compare to LUT to determine bin #  
• Calculate eAOA1 
• Iterate steps to calculate eAOA2 (virtual) and eAOA3 (virtual)
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modified for the virtual spacing processing.  Simulations under a noise free-

environment showed that it was possible to achieve error-free ‘super-resolution’ 

by simply continually increasing the moduli numbers used for the virtual spacing.   

It is difficult to analyze and quantify the susceptibility of the DF 

performance to phase errors and antenna spacing errors using the LabView 

simulator.  The program only provides results for a single AOA value at a time.  

However, it was observed that as phase errors or antenna distance errors were 

introduced, the virtual spacing estimated AOA produced significantly more gross 

error estimates.   

 

Figure 50.   LabView Simulator for Virtual Spacing.   
 

With the algorithm tested successfully on the LabView simulator, 

modifications were made to the LabView control program used for the first array.  

The new array was built with the reference antenna in the center of the ground 

plane, which allowed for the reference antenna to be aligned directly in-line with 

the transmit antenna.  A data set was taken at 1 degree intervals over +60 
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degrees AOA.  The experimental results were saved to a LabView data file, 

imported into Excel and plotted in Figure 51. 

Figure 51.   DF Experimental Performance for Virtual Spacing Array 
 

Although exactly the same hardware was used, the DF performance for 

the real spacing (in blue) is significantly worse compared to the first array.  

Overall DF accuracy for the real spacing is 389 degrees RMS due to the large 

number of estimates with gross errors.   

Results from the virtual spacing (in magenta) follow the same shape as 

the real spacing but appear to have a gain factor error.  While it was not captured 

in this data set, there were several occasions where a higher resolution result, 

with lower AOA estimation error, was successfully provided by virtual spacing.  

However, this occurred only near broadside and was not observed when the 

AOA was increased beyond 5 degrees.    
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F. ERROR SOURCES FOR THE VIRTUAL ARRAY 
The second array, setup for the virtual spacing, suffers from exactly the 

same set of errors as the first array.  However, the sensitivity of the system to 

these errors differs. 

 

1. Plane Wave Approximation  
The size of virtual spacing array is only 14 cm, compared to 66 cm for the 

first array.  Given the size of the virtual array and the distance between the 

transmit antenna and the DF array, these errors are minimal, as array is in the 

‘far-field’.   

 

2. Demodulator Phase Errors 
We can consider the combined demodulator errors as ‘fixed constants’ in 

terms of its maximum absolute error.  For example, the maximum observed error 

of the demodulator boards is in the region of 30 degrees, regardless of the length 

of the array and the antenna spacing used.   

   

3. Antenna Spacing Errors 
Antenna spacing errors are also a relatively fixed quantity.  The amount of 

human accuracy as we build the ground plane, measure and cut the antenna 

slots, and finally attach the dipoles antennas, results in relatively fixed absolute 

errors. 

It is assessed that the main factors contributing to DF estimation error 

arises from the combined demodulator errors and antenna spacing errors.  In 

terms of percentage, these errors increase as we reduce the distance between 

antenna elements.  A higher percentage error decreases the accuracy of the DF 

system and increases the number of gross errors.  For a RSNS-DF system with a 

shorter baseline, errors in phase differentials would have a greater impact, if the 

desired resolution is maintained.   
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G. LIMITATIONS AND CHALLENGES OF APPLYING VIRTUAL SPACING 
From the simulations, it may seem that we can achieve ‘super resolution’ 

by applying the virtual spacing concept and increasingly larger virtual moduli 

sets.  The simulation results in Figures 45 to 47 were conducted in ideal 

circumstances and do not address important practical issues such as noise and 

accuracy of antenna element spacing.  Some of the key considerations, 

limitations and challenges of applying virtual spacing algorithm include:     

 

1. Scaling Factor and Resulting FOV.   
Depending on the original moduli set used, the scaling factor may 

increase or decrease the FOV.  A high resolution over a very small FOV may not 

meet the needs of practical DF systems.   

 

2. SNR to Support Error Free Coding.   

A relatively high SNR of 30 dB was determined to provide a reasonable 

probability in correct bin estimation in [7].  The effects of SNR have yet to be 

determined for N-channel systems.  It is likely that higher levels of SNR would be 

required as we increase resolution by using higher valued moduli sets, whilst 

maintaining the same probability of correct bin estimation. 

 

3. Coding Errors and the Probability of Correct Bin Estimation.  
This is related to the percentage phase differential error.  RSNS coding errors 

are largely a result of system noise, phase differential errors from antenna 

element spacing and the centering of demodulator phase response.  These 

errors ‘propagate downstream’ to the new virtual spacing magnified, as the 

estimated AOAs are determined from a single source of stream of I and Q data 

obtained from one set of antennas; i.e. the real spacing.  The percentage phase 

differential error increases with shorter baselines, resulting in a lower probability 

of correct bin estimation.   
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Similar studies in achieving super resolution for imagery have yielded 

similar results for simulations [20].  Under a noise free environment, imaging 

resolution beyond classical diffraction limits is possible by bandwidth 

extrapolation and analytic continuation.  Extrapolation methods for imaging 

systems have proved to be extremely sensitive to noise.   

Although both imagery and DF systems deal with the nature of waves, RF 

signals are several orders of magnitude lower in terms of frequency and 

wavelength.   Further investigation regarding coding errors on virtual spacing due 

to noise, antenna spacing error and demodulator response would need to be 

conducted to enhance our understanding on the practical limits on the level of 

resolution that is achievable for given SNR and phase errors in a DF system. 

 

H. SUMMARY AND ANALYSIS OF DF PERFORMANCE 
The overall DF performance for the first array using the moduli set           

{7 15 29} is remarkable, considering that the entire DF system was built entirely 

from COTS and the antenna elements were mounted by hand.   

Since the same hardware is used for testing the two arrays, both the 

arrays suffer from the same set of error sources.  These errors include the 

demodulator I/Q centering error, demodulator rotational error, noise in the 

electronics, antenna spacing errors, reflections from the walls of the anechoic 

chamber and approximating the spherical wave as a plane wave.  As discussed 

in the previous section, these errors generally have a higher adverse impact on 

arrays with shorter baselines.   

On hindsight, a longer baseline might have provided a more satisfactory 

set of results for the second array.  The results obtained for the virtual spacing 

has similar shape and characteristics as the results obtained for the real spacing.  

However, virtual spacing results differ significantly from what was expected from 

the simulations, albeit the simulations were generally conducted in LabView for a 

noise free environment.   
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

The RSNS-based DF system shows tremendous promise and offers 

exciting possibilities for both commercial and military applications.  Integrating 

the DF system with opportunistic phased array and aperstructure system, where 

transmit/receive modules are placed at available locations covering the whole 

superstructure and hull of a naval vessel, provides a large-scaled antenna 

configuration with an additional capability of direction finding. 

High value surveillance aircraft like Rivet Joint, Cobra Ball and Joint Stars 

are not used to detect and DF Low Probability of Intercept (LPI) emitters.  

Detection of LPI radars, which transmit CW power in the milli-watt range, can 

only be achieved at short ranges.  Placing the high value surveillance aircraft in 

close proximity of the emitter exposes them to unacceptable risks of being 

attacked.  The RSNS-based DF system, with its small baseline requirements and 

light payload, can be integrated into UAV sensor suites.  These UAVs can act as 

stand-in sensors to bridge the gap in surveillance capability for detection and DF 

of LPI emitters.  

The application of the RSNS algorithm for direction finding is an ongoing 

project.  With the digital architecture for the demonstration array fully 

implemented and functional, the next steps in bringing the RSNS-based DF 

system into a practical standalone system for real-world applications can be 

undertaken.   

To further the progress made on the RSNS-based DF system, a number 

of focus areas needs to be examined with simulations and tests conducted.   

 

A. SENSITIVITY ANALYSIS 
A number of known error sources have been discussed in the thesis.  To 

further our understanding on the adverse impact of these errors, sensitivity 

analysis on errors of interest should be conducted.  Techniques such as Monte 

Carlo simulation on noise and demodulator phase error would enhance our 
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understanding of the system robustness.  Simulations should also be extended to 

determine system response outside of the design frequency and the errors 

caused by the plane wave approximation.   

 

B. REDUCING MAIN ERROR SOURCES 
With the sensitivity analysis completed, efforts can focus on minimizing 

the main error sources.   

 
1.  Demodulator Board 
The set of calibration data for I/Q offset used for this project has been 

verified over several iterations.  However, the offsets were determined using a 

simple averaging of I and Q voltages.  More sophisticated optimization 

techniques can be used to determine the true center of the demodulator 

response.  Raw I and Q data from tests in the anechoic chamber can be saved 

for post-processing and different I and Q offsets tested to determine if the offsets 

can be optimized to reduce errors.  Sourcing for alternative demodulator boards 

could also be considered if budget allows. Same here 

 

2. Antenna Spacing 
It is challenging to achieve the exact antenna spacing required.  Besides 

the spacing, the vertical alignment and the distance at which antennas protrude 

from the ground plane also requires careful adjustment for uniformity.  Even if 

precision milling for the ground plane is available, the antenna elements are still 

mounted by hand.  While crude, careful measurements and alignment using 

foam or paper strips is the likely solution for the demonstration array in the short 

term. And here 
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3. Plane Wave Approximation 
Corrections for the Hygen-Fresnel quadratic term were not incorporated 

into the current algorithm as applying the corrections are challenging when the 

reference antenna is not at the center of rotation.  For future tests, the reference 

antenna should be centered to the pedestal rotational axis and aligned with the 

transmit antenna.  This can be achieved by mounting an extension board onto 

the pedestal in the anechoic chamber.  Corrections for the quadratic term should 

be applied, especially when using an array with a relatively long baseline.  

 

C. OTHER PERMUTATIONS FOR VIRTUAL SPACING 
The solution offered in this thesis for the virtual spacing of N-channels is 

one of many possibilities.  Three specific areas should be studied: 

 

1. Combination of Real Spacing for Virtual Spacing 
Large permutations on combining real spacing to obtain the virtual spacing 

is possible, especially when large number of channels are used.  The maximum 

achievable virtual spacing baseline would be the combination of all the real 

baselines, and the minimum virtual spacing baseline for non-PRP linear moduli is 

determined by subtracting all real baselines from the longest real baseline.  Only 

three cases for virtual spacing have been determined in this thesis.  The 

remaining equations for determining the virtual spacing of a three-channel 

system should be worked out and subsequently extended for N-channels. 

 

2. Optimizing the Choice of Virtual Spacing Used 
Rules of thumb for optimizing the sets of virtual spacing used are not 

available.  Intuitively, it would seem combinations of real spacing that provide 

longer baselines for all the channels of the virtual antenna array would provide a 

lower probability of errors.  Simulations in MATLAB should first be conducted for 

sensitivity analysis to known error sources.  These simulations can be conducted 

for all permutations available for a 3-channel system to understand the 
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robustness against error sources.  Lab tests with different combinations of virtual 

spacing should then be conducted to verify the simulation results. 

 

3. Virtual Spacing for PRP Moduli Sets 
The use of PRP moduli sets results in larger dynamic range and higher 

resolution.  Studies to solve for applying the virtual spacing concept for PRP 

moduli sets should continue.   

 

D. EXTENSION OF DEMONSTRATION ARRAY FOR WIDEBAND 
APPLICATIONS 
In military naval applications, the ability for the wideband interception of 

RF signals from 2 to 18 GHz is required to encompass the range of threats faced 

by a naval platform.  To extend the demonstration for wideband operations, a 2 

to 18 GHz converter could be added prior to the LNA to down convert signals to 

the system operating frequency of 2.4 GHz.  When the frequency is determined, 

usually through an instantaneous frequency measurement sub-system, the 

folding waveform changes can be predicted.  The prediction of the change in 

folding waveforms can then be used to adjust the digital thresholds and 

subsequently for the resolving the signal AOA. 
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